Procedure Bilangan_Prima
{I.S.: User memasukan nilai n}
{F.S.: Menampilkan hasil bilangan prima}
kamus:
n,i,j : integer
bPrima : Boolean
Algoritma:
input(n)
i ← 0
j ← 0
for i ← 2 to n do
if(n mod i=0)
then
j ← j +1
endif
endfor
if (j = 2)
bPrima ← true
else
bPrima ← false
endif
end.
Menghitung TMax, TMin, dan TAvg
Operasi Dasar
|
C(n)
|
←
|
n+3
|
=
|
n
|
+
|
n
|
( if ) min =1
max = n
( for ) min =1
max = n
Menghitung notasi О(Big Oh), Ω(Big Omega), dan Θ(Big Theta)
Tmin(n) = 1 + 3 =4
Tmax(n) = n + 3
TAvg(n) = 4 + 5 + 6 +...+(n+3) ≈ n
n
Tmin(n) = 4
- О(Big Oh)
О = t(n) € О(g(n)) ; t(n) ≤ Cg(n)
4 € О (1)
no = 0
c = 1
- Ω(Big Omega)
Ω = t(n) € (g(n)) ; t(n) ≥ Cg(n)
4 € О (1)
no = 0
c = 1
- Θ(Big Theta)
Θ = t(n) € Θ (g(n)) ; C2g(n) ≤ t(n) ≤ C1g(n)
Batas atas = 6 € О (1)
Batas Bawah = 6 € Ω (1)
no = 0
c1 = 1 ; c2 = 1
Tmax(n) = n + 3
- О(Big Oh)
О = t(n) € О(g(n)) ; t(n) ≤ Cg(n)
О = t(n) € О(g(n)) ; t(n) ≤ Cg(n)
n + 3 ≤ 3n
× 3 ≤ 0 → n = 0
× 4 ≤ 3 → n = 1
(b) 5 ≤ 6 → n = 2
(b) 6 ≤ 9 → n = 3
(b) 103 ≤ 300 → n = 100
(b) 1.003 ≤ 3000 → n = 1.000
no = 2
c = 3
- Ω(Big Omega)
Ω = t(n) € (g(n)) ; t(n) ≥ Cg(n)
Ω = t(n) € (g(n)) ; t(n) ≥ Cg(n)
n + 3 ≥ n
(b) 3 ≥ 0 → n = 0
(b) 4 ≥ 1 → n = 1
(b) 5 ≥ 2 → n = 2
(b) 6 ≥ 3 → n = 3
(b) 103 ≥ 100 → n = 100
(b) 1.003 ≥ 1.000 → n = 1.000
no = 0
c = 1
- Θ(Big Theta)
Θ = t(n) € Θ (g(n)) ; C2g(n) ≤ t(n) ≤ C1g(n)
Batas Atas = n + 3 ≤ 3n = no = 2, c1 = 3
Batas Bawah = n + 5 ≥ n = no = 0, c2 = 1
no = 2, c1 = 3, c2 = 1
Tavg (n) = 4 + 5 + 6 . . . + (n + 3)
n
n
= ½ n ( 4 + (n + 3 ))/n
= ½ (n+7)
= n/2 + 7/2
- О(Big Oh)
О = t(n) € О(g(n)) ; t(n) ≤ Cg(n)
О = t(n) € О(g(n)) ; t(n) ≤ Cg(n)
½n + 7/2 € О(n)
½n + 7/2 ≤ 2n
× 7/2 ≤ 0 → n = 0
× 4 ≤ 2 → n = 1
× 9/2 ≤ 4 → n = 2
(b) 5 ≤ 6 → n = 3
(b) 107/2 ≤ 200 → n = 100
(b) 1007 ≤ 2000 → n = 1000
no = 3
c = 2
- Ω(Big Omega)
Ω = t(n) € (g(n)) ; t(n) ≥ Cg(n)
Ω = t(n) € (g(n)) ; t(n) ≥ Cg(n)
½n + 7/2 € Ω(n)
½n + 7/2 ≥ ½ n
(b) 7/2 ≥ 0 → n = 0
(b) 4 ≥ 1/2 → n = 1
(b) 9/2 ≥ 1 → n = 2
(b) 5 ≥ 3/2 → n = 3
(b) 107/2 ≥ 50 → n = 100
(b) 1.007/2 ≥ 500 → n = 1000
no = 0
c = ½
- Θ(Big Theta)
Θ = t(n) € Θ (g(n)) ; C2g(n) ≤ t(n) ≤ C1g(n)
Θ = t(n) € Θ (g(n)) ; C2g(n) ≤ t(n) ≤ C1g(n)
Batas Atas = ½n + 7/2 ≤ 2n = no = 3, c1 = 2
Batas Bawah = ½n + 7/2 ≥ ½n = no = 0, c2 = ½
no = 3, c1 = 2, c2 = ½
Tidak ada komentar:
Posting Komentar