Procedure Rata_Rata (input Total, Nilai : integer)-> Real
Deklarasi
{Tidak ada }
Algoritma
rata_rata <-- Total / N
endfunction
input (nilai)
Total <-- 0
for i <-- 1 to N do
input ( mhs(i).Nim , Mhs(i).Nama ,Mhs(i).Nilai )
Mhs(i).indeks <-- indeks_nilai ( Mhs(i).Nilai )
Output ( Mhs(i).indeks )
Total <-- total + Mhs(i).Nilai
endfor
Output('Rata-rata Nilai :', rata_rata(Total,N))
Otuput('Nilai Tertinggi :', Nilai_max(Mhs,N))
Function Nilai_max (input Mhs : mahasiswa, input N : integer) --> integer
Deklarasi
max,i : integer;
Algoritma
max <-- Mhs(i).Nilai
for i <-- 2 to N do
if (Mhs(i).Nilai > max)
then
max<-- Mhs(i).Nilai
endif
endfor
Nilai_max <-- max
endfunction
Menghitung Tmin, Tmax, Tavg
OPERASI DASAR
<--
>
*
+
/
Operasi Paling Dalam
<--
Tmin(n) = 1+2 = 3
Tmax(n) = N+2
Tavg(n) = 3+4+5+....(n+2) ~~ n
n
O (Big Oh)
|
Ω (Big Omega)
|
Θ (Big Theta)
|
Tmin (n) = 3
|
Tmin (n) = 3
|
Tmin (n) = 3
|
O = t(n) € O (g(n)); t(n) ≤ Cg(n)
|
Ω = t(n) € O (g(n)); t(n) ≤ Cg(n)
|
Θ = t(n) € Θ (g(n)); C2g(n) ≤ t(n) ≤ C1g(n)
|
Tmin(n) = 3 € O (1)
|
Tmin(n) = 3 € Ω (1)
|
Batas Atas = 3 € O (1)
|
no = 0
|
no = 0
|
Batas Bawah = 3 € Ω (1)
|
C = 1
|
C = 1
|
Jadi = no = 0
|
C1 = 1, C2 = 1
|
Tmax = n+2
O (Big Oh)
O = t(n) € O (g(n)); t(n) ≤ Cg(n)
n+2 € O(n)
n+2 ≤ 2n
2 ≤ 0 n = 0 (x)
5 ≤ 6 n = 3 (√)
11 ≤ 18 n = 9 (√)
22 ≤ 40 n = 20 (√)
Jadi no = 3
C = 2
Ω (Big Omega)
Ω = t(n) € O (g(n)); t(n) ≤ Cg(n)
n+2 € Ω (n)
n+2 > n
2 > 0 n = 0 (√)
6 > 0 n = 4 (√)
10 > 0 n = 8 (√)
102 > 0 n = 100 (√)
Jadi no = 0
C = 1
O (Big Theta)
Θ = t(n) € Θ (g(n)); C2g(n) ≤ t(n) ≤ C1g(n)
Batas Atas = n+2 < 2n = no = 3, C1 = 2
Batas Bawah = n+2 > n= no = 0, C2 = 1
Jadi no= 3, C1= 2, C2 = 1
Tavg(n) 3+4+5+......(n+2)
n
= 1/2 n (3+(n+2))/n
= 1/2(n+5)
= n/2 + 5/2
= 1/2 + 5/n
O (Big Oh)
O = t(n) € O (g(n)); t(n) ≤ Cg(n)
1/2n + 5/2 € O(n)
1/2n + 5/2 ≤ 2n
5/2 ≤ 0 n = 0 (x)
5/2 ≤ 12 n = 6 (√)
5/2 ≤ 18 n = 9 (√)
5/2 ≤ 90 n = 30 (√)
Jadi no =6
C = 2
Ω (Big Omega)
Ω = t(n) € O (g(n)); t(n) ≤ Cg(n)
1/2 + 5/2 € Ω (n)
1/2 + 5/2 > n
5/2 > 0 n = 0 (√)
6/2 > 1 n = 1 (√)
9/2 > 4 n = 4 (√)
95/2 > 90 n = 90 (x)
105/2 > 100 n = 100 (x)
Jadi no = 0
C = 1
O (Big Theta)
Θ = t(n) € Θ (g(n)); C2g(n) ≤ t(n) ≤ C1g(n)
Batas Atas = 1/2n + 5/2 < 2n
Jadi no = 6, C1 = 2
Batas Bawah = 1/2n + 5/2 > 2
Jadi no= 0, C2= 1
Jadi no =6, C1 = 2, C2=1
Tidak ada komentar:
Posting Komentar