Menghitung T(n)Psedocode Rekursif Faktorial N
Function Faktorial Input N : integer) ←
real
{I.S. : faktorial dari harga N sudah terdefinisi}
{F.S. : menghasilkan fungsi faktorial N}
Kamus:
Fak : real
i : integer
Algoritma:
if (N = 0) or
(N = 1) then
Faktorial N ← 1
else
Fak ←
1
for
i ← 2 to N
do
Fak ← Fak *
i
endfor
Faktorial ← Fak
Endif
EndFunction
Menghitung T(n)
Hasil :
N = n
f(x) = Fak ← 1
= Fak ← Fak * i
= f( 1 * i )
maka, f(x) = f( 1 * i )
f(x) = f( 1 * i )
T(n) = T ( 1 * n ) + 1
T( 1 * n ) = T( 1 * 1 * n ) + 1
T( 1 * n ) = Tn( 1 * n ) + 1
T( 2 * n ) = T( 2 * n ) + 1
T( 3 * n ) = T( 3 * n ) + 1
T( 4 * n ) = T( 4 * n ) + 1
T( 5 * n ) = T( 5 * n ) + 1
T(n) = T ( 1 * n ) + 1
= T ( 2 * n ) + 1 + 1
= T ( 3 * n ) + 1 + 1 + 1
= T ( 4 * n ) + 1 + 1 + 1 + 1
= T ( 3 * n ) + 1 + 1 + 1 + 1 + 1
note :
T(n) = T ( i * n ) + 1 = T ( i * 2 ( i * n ))
= T ( i * ( i * n ) + ( i * n ) ) = T ( i ( 2i * 2n ))
= T ( i * 2 ( i * n )) = T (2i2 * 2ni )
= i * n = T (i * n)
n = 1 (*sebagai titik henti), Jika T(1) = 0
MAKA, ( i * n ) Є 0(n)
Menghitung T(n)
Hasil :
N = n
f(x) = Fak ← 1
= Fak ← Fak * i
= f( 1 * i )
maka, f(x) = f( 1 * i )
f(x) = f( 1 * i )
T(n) = T ( 1 * n ) + 1
T( 1 * n ) = T( 1 * 1 * n ) + 1
T( 1 * n ) = Tn( 1 * n ) + 1
T( 2 * n ) = T( 2 * n ) + 1
T( 3 * n ) = T( 3 * n ) + 1
T( 4 * n ) = T( 4 * n ) + 1
T( 5 * n ) = T( 5 * n ) + 1
T(n) = T ( 1 * n ) + 1
= T ( 2 * n ) + 1 + 1
= T ( 3 * n ) + 1 + 1 + 1
= T ( 4 * n ) + 1 + 1 + 1 + 1
= T ( 3 * n ) + 1 + 1 + 1 + 1 + 1
note :
T(n) = T ( i * n ) + 1 = T ( i * 2 ( i * n ))
= T ( i * ( i * n ) + ( i * n ) ) = T ( i ( 2i * 2n ))
= T ( i * 2 ( i * n )) = T (
= i * n = T (i * n)
n = 1 (*sebagai titik henti), Jika T(1) = 0
MAKA, ( i * n ) Є 0(n)
Tidak ada komentar:
Posting Komentar